TUTORIAL I (LINEAR ALGEBRA)

MS 103: Mathematics II Course Instructor: Parama Dutta

1. Prove that the set of all $m \times n$ matrices with entries from a field \mathbb{F} , denoted by $M_{m \times n}$ with the following operations of matrix addition and scaler multiplication: for $A, B \in M_{m \times n}(\mathbb{F})$ and $c \in \mathbb{F}$,

$$(A+B)_{ij} = (A)_{ij} + (B)_{ij}$$
 and $(cA)_{ij} = c(A)_{ij}$.

2. Let S be any non-empty set and \mathbb{F} be any field. Prove that the set of all functions from S to \mathbb{F} , denoted by $\mathcal{F}(S,\mathbb{F})$ is a vector space with the following operations of addition and scaler multiplication defined for $f, g \in \mathcal{F}(S, \mathbb{F})$ and $c \in \mathbb{F}$ by

$$(f+q)(s) = f(s) + q(s) \text{ and } (cf)(s) = cf(s)$$

for each $s \in S$.

3. Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{F}\}$, where \mathbb{F} is a field. Define addition of elements of V coordinatewise, and for $c \in \mathbb{F}$ and $(a_1, a_2) \in V$, define

$$c(a_1, a_2) = (a_1, 0).$$

Is V a vector space over \mathbb{F} with these operations? Justify your answer.

4. Let V and W be vector spaces over a field \mathbb{F} . Let

$$Z = \{(v, w) : v \in V \text{ and } w \in W\}.$$

Prove that Z is a vector space over \mathbb{F} with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$.

- 5. For each of the following list of vectors, determine whether the first vector can be expressed as a linear combination of the other two:
 - (1) (-2,0,3),(1,3,0),(2,4,-1) in \mathbb{R}^3
 - (2) (3,4,1), (1,-2,1), (-2,-1,1) in \mathbb{R}^3
 - (3) (5,1,-5), (1,-2,-3), (-2,3,-4) in \mathbb{R}^3
 - (4) $x^3 3x + 5$, $x^3 + 2x^2 x + 1$, $x^3 + 3x^2 1$ in $P_3(\mathbb{R})$.
 - (5) $6x^3 3x^2 + x + 2$, $x^3 x^2 + 2x + 3$, $2x^3 3x + 1$ in $P_3(\mathbb{R})$.
- 6. Determine whether the given vectors is in the span of S:
 - (1) (-1,1,1,2), $S = \{(1,0,1,-1),(0,1,1,1)\}$

 - (2) $-x^3 + 2x^2 + 3x + 3$, $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$ (3) $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$, $S = \{\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\}$
 - $(4) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, S = \left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right\}$
- 7. Show that if $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices.

- 8. Show that the matrices $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ generates $M_{2\times 2}(\mathbb{F}).$
- 9. Show that the polynomials $x^2 + 3x 2$, $2x^2 + 5x 3$ and $-x^2 4x + 4$ generated $P_2(\mathbb{R})$.
- 10. Show that in $M_{2\times 3}(\mathbb{R})$, the set $\left\{ \begin{bmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{bmatrix}, \begin{bmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{bmatrix}, \begin{bmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{bmatrix} \right\}$ is linearly dependent.
- 11. Prove that the set $\{(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(0,0,0,1)\}$ is linearly independent.
- 12. Determine whether the following sets are linearly dependent or linearly independent
 - (1) $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 x^2 + 2x 1\}$ in $P_3(\mathbb{R})$.

 - (2) $\{(1,-1,2), (1,-2,1), (1,1,4)\}$ in \mathbb{R}^3 . (3) $\left\{\begin{bmatrix}1 & 0\\ -2 & 1\end{bmatrix}, \begin{bmatrix}0 & -1\\ 1 & 1\end{bmatrix}, \begin{bmatrix}-1 & 2\\ 1 & 0,\end{bmatrix}, \begin{bmatrix}2 & 1\\ -4 & 4\end{bmatrix}\right\}$ in $M_{2\times 2}(\mathbb{R})$. (4) $\{x^4 x^3 + 5x^2 8x + 6, -x^4 + x^3 5x^2 + 5x 3, x^4 + 3x^2 3x + 5, 2x^4 + x^3 + 4x^2 + 8x\}$
- 13. Let V be a vector space and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent then prove that S_2 is also linearly dependent.
- 14. Let V be a vector space and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent then prove that S_1 is also linearly independent.
- 15. In $M_{m\times n}(\mathbb{F})$, let E_{ij} denote the matrix whose only non-zero entry is a 1 in the *i*-th row and j-th column. Then prove that $\{E_{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis for $M_{m \times n}(\mathbb{F})$.
- 16. Prove that $\{x^2 + 3x 2, 2x^2 + 5x 3, -x^2 4x + 4\}$ is a basis for $P_2(\mathbb{R})$.
- 17. Determine whether the following sets are basis for the given vector spaces, justify your answer.
 - (1) $\{(1,2,-1),(1,0,2),(2,1,1)\}$ in $\mathbb{R}^3(\mathbb{R})$.
 - (2) $\{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$ in $\mathbb{R}^3(\mathbb{R})$.
 - (3) $\{1+2x-x^2, 4-2x+x^2, -1+18x-9x^2\}$ in $P_2(\mathbb{R})$.
 - (4) $\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$ in $P_2(\mathbb{R})$.
